A force of 30 N acts on a body and moves it through a distance of 5 m in the direction of force. Calculate the work done by the force.

Answer

Given:

Force (F) = 30 N

Distance (d) = 5 m

Work done (W) = ?

Work done = Force x distance = 30 N x 5 m = 150 J

So, the work done by the force = 150 J.

Question 2

A man lifts a mass of 20 kg to a height of 2.5 m. Assuming that the force of gravity on 1 kg mass is 10 N, find the work done by the man.

Answer

Given:

Mass (m) = 20 kg

Distance (d) = Height = 2.5 m

Force of gravity on mass of 1 kg = 10 N

Work done (W) = ?

Force (F) = $mg = 20 \times 10 = 200 \text{ N}$

Work done = Force x distance = 200 x 2.5 = 500 J

So, the work done by the man = 500 J.

A body when acted upon by a force of 10 kgf moves to a distance 0.5 m in the direction of force. Find the work done by the force. Take 1 kgf = 10 N.

Answer

Given:

1 kgf = 10 N

 $10 \text{ kgf} = 10 \times 10 = 100 \text{ N}$

So, Force (F) = 100 N

Distance (d) = 0.5 m

Work done (W) = ?

Work done = Force x distance = 100 x 0.5 = 50 J

So, the work done by the force = 50 J.

Question 4

Two bodies of same masses are placed at height h and 2h. Compare their gravitational potential energy.

Answer

Given:

Mass of first body = Mass of second body = m

Height of first body = h

Height of second body = 2h

g is same for both the bodies.

We know Gravitational potential energy = mgh

Gravitation potential energy of first body (U_1) = mgh

Gravitation potential energy of second body (U2)= mg2h

On comparing both gravitational potential energy:

$$\frac{\mathrm{U_1}}{\mathrm{U_2}} = \frac{\mathrm{mgh}}{\mathrm{mg2h}} = \frac{1}{2}$$

So, gravitational potential energy of first body: gravitational potential energy of second body = 1:2.

Find the gravitational potential energy of 2.5 kg mass kept at a height of 15 m above the ground. The force of gravity on mass 1 kg is 10 N.

Answer

Given:

Mass (m) = 2.5 kg

Height (h) = 15 m

Force of gravity on mass 1 kg = 10 N

Gravitational potential energy (U) = mgh = 2.5 x 10 x 15 = 375 J

So, gravitational potential energy = 375 J.

Question 6

The gravitational potential energy stored in a box of weight 150 kgf is 1.5×10^4 J. Find the height of the box. Take 1 kgf = 10 N.

Answer

Given:

Gravitational potential energy (U) = $1.5 \times 10^4 \text{ J} = 15000 \text{ J}$

Weight = 150 kgf = 150 x 10 = 1500 N

height h = ?

U = mgh

 $15000 = 1500 \times h$

$$h = \frac{15000}{1500}$$

h = 10 m

So height of the box = 10 m.

The potential energy of a body of mass 0.5 kg increases by 100 J when it is taken to the top of a tower from the ground. If the force of gravity on 1 kg = 10 N, what is the height of the tower?

Answer

Given:

Potential energy (U) = 100 J

Mass (m) = 0.5 kg

Force of gravity on 1 kg mass = 10 N

height (h) = ?

U = mgh

 $100 = 0.5 \times 10 \times h$

$$h = \frac{100}{5}$$

h = 20 m

So height of the tower = 20 m.

Question 8

A body of mass 60 kg is moving with a speed 50 m s⁻¹. Find its kinetic energy.

Answer

Given:

Mass (m) = 60 kg

Speed (v) = 50 m s^{-1}

Kinetic energy = ?

Kinetic energy = $\frac{1}{2}$ x mv²

$$=\frac{1}{2} \times 60 \times (50)^2$$

$$= 30 \times 2500$$

$$= 75000 \text{ J or } 7.5 \times 10^4 \text{ J}$$

So kinetic energy = $7.5 \times 10^4 J$.

A truck of mass 1000 kg increases its speed from 36 km h⁻¹ to 72 km h⁻¹. Find the increase in its kinetic energy.

Answer

Given:

Mass (m) = 1000 kg

1 km h⁻¹ =
$$\frac{5}{18}$$
 m s⁻¹

36 km h⁻¹ =
$$\frac{5}{18}$$
 x 36 = 10 m s⁻¹

So, initial speed $(v_1) = 10 \text{ m s}^{-1}$

1 km
$$h^{-1} = \frac{5}{18} \text{ m s}^{-1}$$

72 km h⁻¹ =
$$\frac{5}{18}$$
 x 72 = 20 m s⁻¹

So, final speed $(v_2) = 72 \text{ km h}^{-1} = 20 \text{ m s}^{-1}$

Increase in its kinetic energy = ?

Increase in kinetic energy = $\frac{1}{2}$ m[(v₂)² - (v₁)²]

=
$$\frac{1}{2}$$
 x 1000 x [(20)² - (10)²]

$$= 500 \times 300$$

So increase in kinetic energy = $1.5 \times 10^5 J$.

A car is moving with a speed of 15 km h⁻¹ and another identical car is moving with a speed of 30 km h⁻¹. Compare their kinetic energy.

Answer

Speed of first car = 15 km h⁻¹

Speed of second car = 30 km h⁻¹

Mass of both cars = m

Kinetic energy of first car (K_1) = $\frac{1}{2}$ x mv²

$$=\frac{1}{2} \times m \times (15)^2$$

$$= \frac{225}{2} \times m$$

$$= 112.5 \, \text{m J}$$

Kinetic energy of second car (K_2) = $\frac{1}{2}$ x mv²

$$=\frac{1}{2} \times m \times (30)^2$$

$$=\frac{900}{2} \text{ x m}$$

$$= 450 \text{ m J}$$

Comparing the kinetic energy we get:

$$\frac{K_1}{K_2} = \frac{112.5 \text{ m}}{450 \text{ m}} = \frac{1}{4}$$

So Kinetic energy of first car (K_1) : Kinetic energy of second car $(K_2) = 1:4$.

A pump raises water by spending 4×10^5 J of energy in 10 s. Find the power of pump.

Answer

Given:

Work done by pump = Energy spent = $4 \times 10^5 \text{ J}$ or 400000 J

time = 10 s

Power = ?

$$Power = \frac{Work\ done}{time\ taken}$$

$$= \frac{400000}{10}$$

= 40000 W or 4 x 10⁴ W

So power spent by the pump = $4 \times 10^4 W$.

It takes 20 s for a girl A to climb up the stairs while girl B takes 15 s for the same job. Compare:

- (a) The work done and
- (b) The power spent by them.

Answer

- (a) Both the girls move the same distance and force is also equal on both. Hence, the work done by both the girls is the same.
- .. Work done by girl A: Work done by girl B = 1:1

(b) Power spent =
$$\frac{\text{Work done}}{\text{time taken}}$$

We know,

Work done by girl A = Work done by girl B = W

Power spent by girl A (P_A) =
$$\frac{W}{20}$$

Power spent by girl B (P_B) =
$$\frac{W}{15}$$

Comparing the power spent by girl A and girl B:

$$\frac{P_{A}}{P_{B}} = \frac{\frac{W}{20}}{\frac{W}{15}}$$

$$= \frac{15}{20} = \frac{3}{4}$$

.: Power spent by girl A : Power spent by girl B = 3:4.